COMSOL was employed to model cyclic voltammetry of adsorption-coupled electron-transfer reactions [1]. The symbols used in the COMSOL simulation correspond to those of the model reported in Supplementary Materials of ref. 1 as follows.

[1] D.C. Janda, K. Barma, N. Kurapati, O.V. Klymenko, A. Oleinick, I. Svir, C. Amatore, S. Amemiya, Systematic assessment of adsorption-coupled electron transfer toward voltammetric discrimination between concerted and non-concerted mechanisms, Electrochim. Acta, 428 (2022) 140912.

Case II

Non-Concerted Mechanim

COMSOL	Model
lamdades	$\lambda_{ m des}^{ m O}$
kappa	κ
rho	$ ho_0$
lamdaIS	${\it \Lambda}_{ m IS}^{ m O_{ads}}$
Esw	switching potential
Erange	potential scan range
alpha	α
Vet	$V_{ m IS}^{ m O_{ads}}$
Vads	$V_{\mathrm{ads}}^{\mathrm{O}}$
Es	$E-E_{\rm IS}^{0',{\rm O}_{ m ads}}$
theta	ξ_{0s}^{0}
c	C_{O}
u	$ heta_{ m O}$
u2	$ heta_{ m R}$

Concerted Mechanim

COMSOL	Model
lamdaC	$\Lambda_{\mathrm{C}}^{\mathrm{O}}$
thetaC	$\xi_{\rm C}^{\rm O}$

Case III

Non-Concerted Mechanim

COMSOL Model

lamdades λ_{des}^{R}

kappa κ

rho $\rho_{
m R}$

lamdaOS Λ_{OS}^{O}

Esw switching potential

Erange potential scan range

alpha α

Vet V_{OS}^{O}

Vads $V_{\rm ads}^{\rm R}$

Es $E - E_{OS}^{0',O}$

theta ξ_{0S}^{0}

c Co

c2 $C_{\rm R}$

u $\theta_{
m R}$

Concerted Mechanim

COMSOL Model

lamdaC Λ_{C}^{O}

thetaC $\xi_{\rm C}^{\rm O}$